Machine Learning Modelling in R:: CHEAT SHEET ### **Supervised & Unsupervised Learning** #### **Meta-Algorithm, Time Series & Model Validation** | ALGORITHM | DESCRIPTION | R PACKAGE::FUNCTION | SAMPLE CODE | ALGORITHM | DESCRIPTION | R PACKAGE::FUNCTION | SAMPLE CODE | |---------------------------------|---|--|---|---|--|--|---| | Naïve Bayes classifier | A classification technique based on Bayes' Theorem with an
assumption of independence among predictors. In simple
terms, a Naive Bayes classifier assumes that the presence of
a particular feature in a class is unrelated to the presence of | e1071::nalveBayes | nalveBayes(class ~ ., data = x) | Regularisation
L1 (Lasso)
L2 (Ridge) | Regularization adds a penalty on the different parameters of
a model to reduce the freedom of the model. Hence, the
model will be less likely to fit the noise of the training data
and will improve the generalization abilities of the model | glmnet::glmnet | L1: g mnet{myMatrixA, myMatrixB, family = "gaussian",
alpha = 1)
L2: g mnet{myMatrixA, myMatrixB, family = "gaussian",
alpha = 0) | | <u> </u> | any other feature A non-parametric method used for classification and | | | Boosting | A process of iteratively refining, e.g. by reweighting, of
estimated regression and classification functions (though it
has primarily been applied to the latter), in order to improve | Paramatric model -
mboost::glmboost | glmboost(Yen ~ ., data = curr1[trnidxs,]) | | k-Nearest
Neighbours | regression. In both cases, the input consists of the k closest
training examples in the feature space. The output depends
on whether k-NN is used for classification or regression | class::knn | knn(train, test, cl, k = 1, l = 0, prob = FALSE, use.all = TRUE) | Bagging Bagging | predictive ability. Bagging is a way to increase the power of a predictive statistical model by taking multiple random samples (with replacement) of the training data set, and using each of them to construct a separate model and separate predictions for the original test set | All models: foreach
Tree models: lpred::bagging | foreach: d < data.frame(s=1:10, y=norm(10))
s < foreach(d=iter(d, by='row'), .combine=rbind)
%dopar%d
identica(s, d)
jpred: bagging(formula, data, subset, na.action=na.rpar/
\dots) | | Linear Regression | Model the linear relationship between a scalar dependant variable Y and one or more explanatory variables (or independent variables) denoted X | stats::lm | Im(dist~speed, data=cars) | | | | | | Logistic Regression | Used to predict a binary outcome (1 / 0, Yes / No, True / False) given a set of independent variables. | stats::glm | $glm[Y^{\sim} ., family = binomial (link = 'logit'), data = X)$ | Pruning | Pruning is a technique that reduces the size of decision
tree by removing sections of the tree that provide little
power to classify instances. Pruning reduces the complexity
of the final classifier and hence improves predictive accuracy
by reducing overfitting | rpart::prune | prune(x, cp = 0.1) | | Tree-Based
Models | The idea is to consecutively divide (branch) the training dataset based on the input features until an assignment criterion with respect to the target variable into a "data bucket" (leaf) is reached | rpart::rpart | rpart(Kyphosis~Age + Number + Start, data = kyphosis) | Random Forrest | An ensemble learning method for classification, regression
and other tasks, that operate by constructing a multitude of
decision trees at training time and outputting the class that
is the mode of the classes (classification) or mean prediction | randomForest::randomForest | randomForest(X ~ . , data = Y , subset = mySub) | | Artificial
Neural Network | Neural networks are built from units called perceptrons.
Perceptrons have one or more inputs, an activation function
and an output. An ANN model is built up by combining
perceptrons in structured layers. | neuralnet::neuralnet | neuralnet(f,data=trainhidden=c(5,3),linear.output=T) | Lead-lag analysis, | (regression) Random sampling of observations for training and testing a model can be an issue when faced with a times dimension. | stats
xts
forecast | Auto-correlation: acf(x, lag.max = NULL, type = c("correlation", "covariance", "partial")) Spectral Analysis: spec.pgram(myTs, spans = NULL) | | Support
Vector Machine | A data classification method that separates data using hyperplanes | e1071::svm | svm(formula, data = NULL,, subset, na.action = na.omit, scale = TRUE) | Spectral analysis, Time series clustering, Seasonality, Trend | Random sampling may either destroy serial
correlation properties in the data which we would like to
exploit | spectral
TTR | Seasonal Decomposition of Time Series -
stl(x, s.window = 7, t.window = 50, t.jump = 1) | | Principal Component
Analysis | A procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. | stats::prcomp
stats::princomp
FactoMineR::PCA
ade4::dudi.pca
amap::acp | stats: prcomp[formula, data = NULL, subset, na.action,) stats: princomp[formula, data = NULL, subset, na.action,) FactoMineR: PCA[decathlon, quanti.sup = 11:12, quall.sup=13) adea: dudi.pca[deugStab, center = deugScent, scale = FALSE, scan = FALSE) amap: acp[lubisch) | Performance metrics | Depends on the problem: Regression: squared errors, outliers, error rate Classification: Accuracy, precision, recall, F-score | Regression-stats::outlierTest,
stats:: qqPlot
Classification-ROCR::
Tree: caret:: confusionMatrix | Regresion: fit <- Im(Y"X,data=myData)
outlierTest(fit)
qqPlot(fit, main="QQ Plot") | | | | | | Biais-Variance
Tradeoff | Simple models with few parameters are easier to compute
but may lead to poorer fits (high bias). Complex models may provide more accurate fits but may
over-fit the data (high variance) | Tailored to the analysis | Tailored to the analysis | | k-Mean
Clustering | Aims at partitioning $\it n$ observations into $\it k$ clusters in which each observation belongs to the cluster with the nearest mean | stats::kmeans | kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE) | Cross validation | Cross validation compares the test performances of different model realisations with different sets or values of parameters | caret::createDataPartition
caret::createFolds | createDataPartition(classes, p = 0.8, list = FALSE) | | Hierarchical
Clustering | An approach which builds a hierarchy from the bottom-up, and doesn't require the number of clusters to be specified beforehand. | stats::hclust | hclust(d, method = "complete", members = NULL) | Learning Curves | Learning curves plot a model's training and test errors, or
the chosen performance metric, depending on the training
set size. | caret::learing_curve_dat | learing_curve_dat(dat, outcome = NULL, proportion = (1:10)/10, test_prop = 0, verbose = TRUE,) | #### **Standard Modelling Workflow** # #### **Time Series View**